

GSFC · 2015

Experimental and Numerical Study of Nanoemulsion Heat Transfer Fluid

Naresh Poudel, Jiajun Xu Ph.D. University of the District of Columbia

Outline

- Introduction
- Structural Data
- Experimental Results
- Simulation Setup and Results
- Conclusions
- Acknowledgments

Introduction: Nanoemulsion Fluids

 Definition and formation: One fluid is dispersed into another immiscible fluid as self-assembled nanosized droplets to create a "nanoemulsion fluid"

Table 1 Comparison of Nanoemulsion fluids and Emulsion

S.No	Property	Nanoemulsion fluids	Emulsion	
1	Appearance	Transparent	Turbid	
2	Interfacial	Ultra low (usually <<1 mN/m)	low	
	tension			
3	Droplet size	<50 nm	>500nm	
4	Stability	Thermodynamically stable, long	Thermodynamically	
		shelf-life	unstable	
5	Preparation	Self-assembly	Need of external	
			shear	
6	Viscosity	Newtonian	Non-Newtonian	

Water-in-FC72 Nanoemulsion fluids

Surfactant: F6H6 & Perfluorooctanoate

Base Fluid: FC72 a clear, colorless, fully-fluorinated liquid, thermally and chemically stable

Pictures of Water/FC72 nanoemulsion fluids (Bottle A) and pure FC72 (Bottle B)

Structural Data

Above: SANS Intensity I vs Wave Vector q for Water-in-FC72 nanoemulsion fluids

Above: DLS correlation function vs delay time for Water-in-FC72 nanoemulsion fluids

Table 2 Diameter of Water/FC72 nanoemulsion fluids

Volumetric fraction of water(vol.%)	3	6	9	12
Diameter (nm)	10.053	9.7637	8.8991	8.0932

Experimental Results: Boiling Curve

10 Vol% Water-in-FC72 Nanoemulsion fluids

- Enhanced boiling heat transfer capability: wider operation temperature range & higher CHF
- Higher heat transfer coefficient (HTC) after boiling occurs
- No significant change in nucleation temperature
- Boiling hysteresis are observed in both fluids

Simulation Setup and Results

- 2D, double-precision, segregated, laminar
- Plate Pt Heater with controlled temperature Configuration
- Simulate nucleation process inside Water/FC72 Nanoemulsion Fluids

Simulation Results

Velocity Vector Magnitude (1.2s)

Contours of Static Temperature (mixture) (k) (Time=1.2000e+00)

FLUENT 6.3 (2d, dp, pbns, mixture, lam, unsteady

Simulation Results

Volume fraction of vapor(1.2s)

- ➤ The mixture model can simulate nucleation process inside Water/FC72 Nanoemulsion Fluids
- Need bubble dynamics simulation

Single Bubble Growth Simulation

High-Speed Camera (Phantom): up to 1500fps at full resolution is used to get the bubble dynamics during nucleation.

Based upon the observation of the nucleation process under controlled temperature using high-speed camera, the following bubble dynamics data is used for simulation:

- 1. Bubble Growth Time: 7.8ms
- 2. Vapor mass flux: 19.21kg/m²s
- 3. Bubble Simulation Duration: 31.6ms
- 4. Wait time: 23.8ms
- 5. Liquid flux after bubble detachment:0.1ms

Mass Flux Curve for Simulation

Bubble Growth Simulation Results

Bubble growth agrees well with camera data

Conclusions

- Water-in-FC72 nanoemulsion fluids has been investigated here and it shows greatly enhanced phase change heat transfer properties
- The pool boiling test has been successfully simulated using ANSYS software which shows good agreement with experimental data
- The transient single bubble dynamics is also simulated here which also shows good agreement with experimental data

Acknowledgement

- Dr. Bao Yang, University of Maryland, College Park
- Dr. Xinan Liu, University of Maryland, College Park
- Dr. Baulem Hammouda, NCNR National Institute of Standards and Technology

Questions?